SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE MARIE, ON

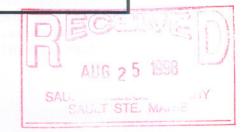
Course Title: SOFTWARE ENGINEERING

Code No.: CSD306 Semester: FIFTH

Program: COMPUTER ENGINEERING

Author: Frank Turco

Date: Sept. 1998 Previous Outline Date: Sept. 1996


Approved: A. D. Kunario Aug. 20/98

Dean Date

Total Credits: 6 Prerequisite(s): None

Length of Course: 4 hours per week Total Credit Hours: 96

Copyright © 1997 Sault College of Applied Arts & Technology
Reproduction of this document by any means, in whole or in part, without the prior
written permission of Sault College of Applied Arts & Technology is prohibited.
For additional information, please contact Kitty DeRosario, Dean, School of Trades
& Technology, (705) 759-2554, Ext. 642.

I. Course Description:

In this course we will follow a systematic approach to software engineering. The students will learn and work with the necessary tools and techniques to collectively develop a major software project. In all the tools and techniques, the most important component will always be communication. Therefore, communication is the key to success in software development and thus oral, written and interpersonal communication skills will be the main focus of this course.

II. LEARNING OUTCOMES AND ELEMENTS OF PERFORMANCE:

(Generic Skills Learning Outcomes placement on the course outline will be determined and communicated at a later date.)

In this course, the student will be introduced to a variety of tools, techniques and methodologies that will allow them to properly analyze and design computer solutions. The following outcomes will not necessarily follow any chronological order.

Topics will be covered as deemed appropriate. The main focus is to have students appreciate that developing software is much more than just having the technical ability to program.

Communication, people, technologies, environment and many other factors are also critical factors towards successful development.

A. Learning Outcomes:

- 1. Describe why Systems Analysis/Software Engineering are so important and why there is a need for effective communication.
- Work in teams to demonstrate the people aspects of Systems Development.
- 3. Describe the various tools and techniques that relate to system development methodologies.
- 4. Manage and effectively plan all aspects of the system development process.
- 5. Analyze and problem solve by using various tools techniques, and documentation that relate to systems development methodologies.

COURSE NAME

CSD306
CODE NO.

II. LEARNING OUTCOMES AND ELEMENTS OF PERFORMANCE (Continued):

B. Learning Outcomes and Elements of the Performance:

Upon successful completion of this course the student will demonstrate the ability to:

1. Describe why Systems Analysis/Software Engineering are so important and why there is a need for effective communication.

Potential elements of the performance:

- describe the historical evolution of Software Engineering
- describe the quality, effectiveness, productivity and political aspects of Software Projects.
- define what a system is and what the different system categories are.

This will constitute approximately 10% of the course grade (possible weighting strategy) and take approximately 2 weeks.

RESOURCES:

TEXTBOOK: Chapters 1,2,3,4
Professor's handouts, guidance and material
transparencies, class notes, articles

COURSE NAME

CSD306
CODE NO.

II. LEARNING OUTCOMES AND ELEMENTS OF PERFORMANCE (Continued):

- B. Learning Outcomes and Elements of the Performance (Continued):
 - 2. Work in teams to demonstrate the people aspects of Systems Development.

Potential elements of the performance:

- define and describe the categories of people involved in software development
- define and describe the categories of users as well as the different objectives they have
- describe the role of the system analyst in a system development project
- describe the role of management in a systems development project
- describe the roles of others in a software project
- demonstrate teamwork skills and accept individual and group responsibilities

This will constitute approximately 15 % of the course grade (possible weighting strategy) and take approximately 3 weeks.

RESOURCES:

TEXTBOOK: Chapters 18,19,5,6
Professor's handouts, guidance and material
transparencies, class notes, articles

CODE NO.

II. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE (Continued):

- B. Learning Outcomes and Elements of the Performance (Continued):
- 3. Describe the various tools and techniques that relate to system development methodologies.

Potential elements of the performance:

- describe the concept of a project life cycle
- describe the characteristics of the classical project life cycle
- describe the differences between radical and conservative life cycles
- describe the prototyping approach
- explain the changes that have taken place in structured analysis
- describe why automated tools are important to the future of systems analysis

This will constitute approximately 10% of the course grade (possible weighting strategy) and take approximately 2 weeks.

RESOURCES:

TEXTBOOK: Chapters 7,8,9,10
Professor's handouts, guidance and material
transparencies, articles, research material

COURSE NAME

CSD306
CODE NO.

II. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE (Continued):

- B. Learning Outcomes and Elements of the Performance (Continued):
 - 4. Manage and effectively plan all aspects of the system development process.

Potential elements of the performance:

- demonstrate the concept of planning and its relevance
- define and produce project goals and requirements
- recognize the relationship of planning with respect to project size
- produce and use project planning development processes including:

Project Phases
Milestones, documents, reviews
Project costing
Prototyping
Successive Versions

 work within a project planning organizational structure that includes:

Project Format
Project Team Structure
Project Quality Assurance
Project verification and validation

 produce the project feasibility study (also known as the engineering study)

This will constitute approximately 25% of the course grade (possible weighting strategy) and take approximately 4 weeks.

RESOURCES:

TEXTBOOK: Chapters 7,8,9,10,11,12,13,14
Professor's handouts, guidance and material
transparencies, articles and research material

CSD306

II. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE (Continued):

- B. Learning Outcomes and Elements of the Performance (Continued):
 - 5. Analyze and problem solve in a team environment by using various tools techniques, and documentation that relate to systems development methodologies.

These outcomes will represent the majority of the material covered in this course. There will be extensive use of teamwork, tools and techniques to properly analyze and design computer systems. The student will also be exposed to the software deliverables in this course. Subsequent courses will develop these skills in greater detail. Some of these tools and deliverables will be covered in greater detail than others.

Potential elements of the performance:

 Produce effective system documentation to assist in the analysis by using the major modelling tools such as:

> Dataflow Diagrams, Data Dictionary, Process Specifications, Entity Relationships, Joint Application Design Sessions (JAD)

 Produce software deliverables at each stage of the SDLC such as:

Problem Statement, Feasibility Study Project plan, Requirement specs Functional specs, Managerial Presentations

This will constitute approximately 40% of the course grade (possible weighting strategy) and take approximately 5 weeks.

RESOURCES:

TEXTBOOK: Chapters 9,10,11,12,13,14
Professor's handouts, guidance and material
transparencies, articles and research material

SOFTWARE ENGINEERING

COURSE NAME

CSD306 CODE NO.

II. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE (Continued): C. Learning Outcomes and Elements Summary:

Many software systems are still being produced that are unreliable, over budget, poorly documented and not well suited to the user. A well engineered software system must be reliable, understandable, and maintainable.

A disciplined software development approach is absolutely critical to minimize the common problems with software. Most organizations follow a structured and disciplined approach to software development. They use different tools, techniques and methodologies and levels of sophistication but for the most part follow the System development Life Cycle (SDLC).

We will use a variety of tools and techniques to accomplish the outcomes as set out in the previous sections.

Students will be asked to formally and informally answer several specific questions on an individual basis as well as part of a group effort.

Students are also required to be team players and work in small groups to answer some of the questions and solve mini cases. The objective here is to build a strong team atmosphere as well as having students appreciate that there isn't always a clear cut answer to development and people with different perspectives can improve the results. The students are to bring motivation, participation and good listening skills to the table to help each other come up with a better collective solution.

Once we work with the variety of tools used in SDLC, students will be required to provide graphical documentation such as Dataflow Diagrams and Entity Relationship Diagrams. If the facilities are available, the students will be required to use productivity tools such as EXCELERATOR to produce this documentation. We may also use tools for project management such as Microsoft Project. We will also simulate a common repository (dictionary) for software development and maintain internal communication documentation.

III. TOPICS TO BE COVERED:

* NOTE:

These topics sometimes overlap several areas of skill development and are not necessarily intended to be explored in isolated learning units or in the order below.

This particular course assumes the student has already attained significant programming skills and techniques through previous courses. The course focuses on the crucial analytical side of software development. it takes much more than a great programmer to be successful in building software.

TOPICS

APPROXIMATE TIME

1.	Introduction to Systems	
	Analysis and Design	2 WEEKS
2.	People Aspects in software	3 WEEKS
3.	Systems Development Life Cycle	
	Methodology	2 WEEKS
4.	Project Planning and Management	4 WEEKS
5.	Teamwork, Modelling Tools and	
	Software Deliverables	5 WEEKS

IV. REQUIRED RESOURCES/TEXTS/MATERIALS:

TEXTBOOK:

1. "THE NEW SOFTWARE ENGINEERING" Sue Conger

MATERIALS:

- 2. At least 5 3.5" high density floppy disks
- 3. Additional reference material will either be given to the students or placed in the library for the student's use.
- 4. Instructor's Handouts, Guidance, and Material as it relates to the individual topics.

PAGE 9

SOFTWARE ENGINEERING	CSD306			
COURSE NAME	CODE NO.			

V. EVALUATION PROCESS/GRADING SYSTEM:

Theory	Tests	, Pi	ract	ical	Tests	and	Quizzes	60	00
Assign	ments	and	Lab	Work	2			40	00

The tentative breakdown is as follows:

2	FORMAL THEORY TESTS Take Home Tests		EACH EACH
4 2	ASSIGNMENTS ASSIGNMENTS		EACH EACH

Some minor modifications to the above percentages may be necessary. The instructor reserves the right to adjust the mark up or down 5% based on attendance, participation and whether there is an improving trend.

As per school policy, the student must pass both the assignment portion and the testing portion of the evaluation scheme.

- * All Assignments must be completed satisfactorily to complete this course. Late hand in penalties will be 5% per day. Assignments will not be accepted past one week late unless there are extenuating and legitimate circumstances.
- * Due to the heavy emphasis on group effort and team work, late hand ins will not be allowed for some assignments. Absenteeism and lack of group cohesiveness will disrupt all members of the group and will not be tolerated.
- * The professor reserves the right to adjust the number of tests, practical tests and quizzes based on unforeseen circumstances. The students will be given sufficient notice to any changes and the reason thereof.

COURSE NAME

V. EVALUATION PROCESS/GRADING SYSTEM (continued):

- * Mandatory work that is individual in nature will result in an Incomplete with the option of makeup work at the end of the semester.
- * Mandatory work that is critical to the rest of the team players will be absolutely required within the agreed upon time frame. Failing to comply may result in action taken.
- * A student who is absent for 3 or more times without any valid reason or effort to resolve the problem will result in action taken.
- NOTE: If action is to be taken, it will range from marks being deducted up to and including removal from the course.

GRADING SCHEME

1. TESTS

Written tests will be conducted as deemed necessary; generally at the end of each block of work. They will be announced about one week in advance. Quizzes may be conducted without advance warning.

2. ASSIGNMENTS

Assignments not completed by the assigned due-date will be penalized by 5% per day late. All assignments must be completed satisfactorily to complete the course.

SOFTWARE ENGINEERING

COURSE NAME

CSD306 CODE NO.

V. EVALUATION PROCESS/GRADING SYSTEM (continued):

3. GRADING SCHEME

A+	90 - 100%	Outstanding achievement			
A	80 - 89%	Excellent achievement			
В	70 - 79%	Average Achievement			
C	55 - 69%	Satisfactory Achievement			
R	less than 55	Repeat			
CR	Credit given	Credit Exemption			
S	Satisfactory	used at midterm only			
U	Unsatisfactory	unsatisfactory			
X	A temporary grade				

An 'X' grade is limited to instances where exceptional circumstances have prevented the student from completing objectives by the end of the semester. An X grade must be authorised by the Chairperson. It reverts to an R if not upgraded in an agreed-upon time, less than 120 days.

4. UPGRADING OF INCOMPLETE

When a student's course work is incomplete or final grade is below 55%, there is the possibility of upgrading to a pass when the student's performance warrants it. Attendance and assignment completion will have a bearing on whether upgrading will be allowed. A failing grade on all tests will remove the option of any upgrading and an R grade will result. The highest grade on re-written tests or assignments will be 56%.

Where a student's overall performance has been consistently unsatisfactory, an R grade may be assigned without the option of make-up work.

The method of upgrading is at the discretion of the teacher and may consist of one or more of the following options: assigned make-up work, re-doing assignments, rewriting of tests, or writing a comprehensive supplemental examination.

SOFTWARE ENGINEERING

COURSE NAME

CSD306

VI. SPECIAL NOTES:

- 1. All students should be aware of the Special Needs
 Office in the college. If you have any special needs
 such as being visually impaired, hearing disabled,
 physically disabled, learning disabilities you are
 encouraged to discuss required accommodations
 confidentially with the Professor and/or contact the
 Special Needs Office, Room E1204, Ext 493, or 717,
 or 491 so that support services can be arranged for
 you.
- 2. Your Professor reserves the right to modify the course as he/she deems necessary to meet the needs of students.
- 3. It is the responsibility of the student to retain all course outlines for possible future use in gaining advanced standing at other post-secondary institutions.
- 4. Plagiarism
 Students should refer to the definition of
 "academic dishonesty" in the "Statement of Student
 Rights and Responsibilities". Students who engage
 in "academic dishonesty" will receive an automatic
 failure for that submission and/or such other
 penalty, up to and including expulsion from the
 course, as may be decided by the professor.
- 5. Substitute course information is available at the Registrar's office.
- 6. Students must achieve a passing grade in **both** the assignment and the test portions of the course.
- 7. The topics will not necessarily be covered in the order shown in this course outline.

VII. PRIOR LEARNING ASSESSMENT

Students who wish to apply for advanced credit in the course should consult the professor.

-31,300

i widd da ganna i'r blai i

nasi palatani vilata Mario palatani bay Tampan barrani

y 10773 mone prodice and had been another

erot describe the chief to the common the co

ten es successos, está de valuações como en en el eno enconsidad la lacina en está de la decima en entre esconherent agranda de entre entre en entre en

LEADY CO.

The contraction of any contraction of the contracti

end of the bulk the making engalished the the constraint of the succession of the su

and the Williams of Mollan Interest of Publishing the

Or classon mean acclare a passing grade in both that

The turbes will not normagically be convered us the

THE OWNER DETRICAL R

end in ditters because the sole yields of marketon with the